If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1686x+709771=0
a = 1; b = 1686; c = +709771;
Δ = b2-4ac
Δ = 16862-4·1·709771
Δ = 3512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3512}=\sqrt{4*878}=\sqrt{4}*\sqrt{878}=2\sqrt{878}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1686)-2\sqrt{878}}{2*1}=\frac{-1686-2\sqrt{878}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1686)+2\sqrt{878}}{2*1}=\frac{-1686+2\sqrt{878}}{2} $
| x^2+1686x+710134=0 | | x^2+1685x+710134=0 | | x^2+1688x+710134=0 | | g^2-515g+87545=744552 | | c^2=55 | | 33333333g=2222 | | -4-7x=-6x-11 | | 4x+73=7 | | 1.3*10^-3=x^2/1.25-x | | 9(2k+3)=k+ | | P(x)=-0.23x+20 | | (X+40°)+x=180 | | -4-7x=-6-11 | | 12+9x+4=48 | | 8+(-n)+(-2)=17 | | −4−7x=−6x−11 | | X/8-x/16+9=x+9 | | 2+17+65=65+2+x | | 2y-27=y+18 | | 350=10000r12 | | 5x=(3x+1+6x+1)/2 | | 5x=(3x+1+6x+1)÷2 | | 350=1000r12 | | 6m-12=0 | | 4/3a-1/12a+13/6=8/3 | | z+6.1=0.5(0.4)/0.35-0.6(z-6.63)/0.42 | | b^2-9b-9=0 | | 6x+11=6x+5) | | -3+3x=-2x+-2 | | 4x/12-9x/12=1/12 | | Y=-5x/3-2 | | d2+10d-24=0 |